报告人:潘光明(教授,新加坡南洋理工大学)
邀请人:李艳鹏
报告一: Testing high dimensional white noise and linear process
摘 要: Consider high dimensional time series. We propose a test statistic based on the difference of the trace of sample autocovariance matrices at the adjacent time lags. It could be used to test white noise and MA(q) models.
报告时间:2024年12月18日 10:00-12:00
报告地点:理学楼609
报告二: Asymptotics of high-dimensional time series
摘 要: We consider four structures of high dimensional time series in terms of factor structure and nonstationary. We propose a novel approach to identifying them. The proposed three-step method includes:
(1) the ratio statistic of empirical eigenvalues;
(2) a projected Augmented Dickey-Fuller Test;
(3) a new unit-root test based on the largest empirical eigenvalues.
报告时间:2024年12月18日 15:00-17:00
报告地点:理学楼609
报告人简介:
潘光明,新加坡南洋理工大学教授,博士生导师。2005年博士毕业于中国科学技术大学统计金融系;之后在新加坡国立大学、台湾中山大学、荷兰埃因霍温科技大学做博士后和学术交流工作;自2008年以来,在新加坡南洋理工大学工作;2013年遴选为国际统计学会会员(Elected Member of International Statistical Institute)。研究领域包括计量经济理论、高维统计、随机矩阵、多元统计等。主持新加坡国家基金项目多项,已在Journal of the Royal Statistical Society Series B、Annals of Statistics、Journal of the American Statistical Association、Annals of Probability、Transactions of the American Mathematical Society、Annals of Applied Probability、Bernoulli、IEEE Transactions on Signal Processing、IEEE Transactions on Information Theory等顶级统计学杂志上发表60余篇学术论文,担任Random Matrices: Theory and Applications杂志编委。