学术报告
学术报告
当前位置:首页  学术报告
兰州大学宋伦继教授学术报告
发布人:张艺芳  发布时间:2023-06-08   浏览次数:10
 

报告人宋伦继教授

报告题目An Over-Penalized and Stabilized Weak Galerkin Method for Parabolic Interface Problems with Time-dependent Coefficients

报告摘要

1Based on the idea of classical discontinuous Galerkin and weak Galerkin finite element methods, we introduce an over-penalized term in the new scheme as a part of stabilization for solving parabolic interface problems. From the double-valued functions defined on interior edges of elements, it is natural to generate jumps of the over-penalized term. An over-penalized and stabilized weak Galerkin (OPSWG) finite element method can be applied very well to interface problems with general imperfect interface. Importantly, the diffusion coefficients of the interface problems depend on both temporal and spacial variables, not only limited in space as usual.

2With the use of $(P_k(K),P_{k-1}(e),$ $[P_{k-1}(K)]^d)$ elements, semi-discrete and fully discrete schemes with backward Euler approximation in time are presented, and then the semi-discrete one is analyzed to be unconditionally stable. To analyze error estimates of semi-discrete and fully discrete schemes directly by error equation, we can just have optimal convergence order in energy norm. By virtue of the introduction of an elliptic projection operator, optimal error estimates of those schemes in $L^2$ norm can be proved. Numerical examples are given to validate the efficiency and optimal convergence orders of the new schemes.

报告时间2023.06.10   16:00-19:00

报告形式:腾讯会议;  会议号459-756-340 

获取会议密码请发邮件至:yangchang@hit.edu.cn

 

报告人简介宋伦继兰州大学数学与统计学院教授、应用数学博士、美国阿拉巴马大学博士后,2020年首批国家一流本科课程负责人,2021兰州大学隆基教育教学骨干奖。从事弱有限元方法及间断Galerkin类型方法的理论与计算、无界区域高频时谐波散射问题高精度算法研究、间断类型有限元解的PPR梯度重构方法等研究。在J. Comput. Phys., J. Sci. Comput., Appl. Numer. Math.等国内外学术期刊发表学术论文30篇,主持国家自然科学基金面上项目1项,结题国家自然科学基金、省级项目、中央高校基本科研项目等7项。