报告人:雍稳安教授
报告题目:Discrete-velocity-direction models of BGK-type with minimum entropy
报告摘要:
(1) In this talk, I will present discrete-velocity-direction models (DVDMs) with collisions of BGK-type for simulating rarefied flows. Unlike the conventional kinetic models, the new models restrict the transport to finite fixed directions but leaves the transport speed to be a 1-D continuous variable. Analogous to the BGK equation, the discrete equilibriums of the new models are determined by minimizing a discrete entropy. We investigate the existence of the discrete equilibriums and the $H$-theorem. We also show that the discrete equilibriums can be efficiently obtained by solving a convex optimization problem.
(2) The proposed models provide a new way in choosing discrete velocities for the computational practice of the conventional discrete-velocity methodology. It also facilitates a convenient multidimensional extension of the extended quadrature method of moments. We validate the models with numerical experiments for a number of flows, including 2 D Riemann problems.
报告时间:2022.12.25 上午11:00-14:00
报告形式:腾讯会议; 会议号:349-804-159
获取会议密码请发邮件至:yangchang@hit.edu.cn
报告人简介:雍稳安,清华大学长聘教授,博士生导师。1992年于德国海德堡大学取得博士学位,2005年取得德国教授资格(habilitation),其主要研究领域是偏微分方程、数值方法和非平衡态热力学。系统地建立了双曲偏微分方程松弛问题的数学理论,找到了这类问题的内在共性(Yong's stability condition)。创立了非平衡态热力学的守恒耗散理论(CDF),并成功地应用于生物、地学等领域,提出了已被实验验证的描述可压缩粘弹性流体流动的数学模型(Yong's model)。在计算流体力学方面,证明了工程上广泛使用的格子 Boltzmann 方法的稳定收敛性,并针对这种数值方法率先提出了单点边界格式(ZY method),已被广泛使用。主要结果发表在 Arch. Rational Mech. Anal., Automatica,J. Comput. Phys.,Philos. Trans. Royal Soc. A, Siam 系列等相关领域的知名国际刊物上,有些结果已被若干权威专著和教材所采纳。