报告人:徐立伟教授
报告题目:High order finite element methods for the magnetohydrodynamic equations
报告摘要:
(1)The magnetohydrodynamic (MHD) equation and its variants, have many applications in sciences and engineering. In this talk, we first introduce a self-consistent hydrodynamic Drude model which takes into account the electron spill-out and tunneling effect, and then propose an energy-stable leap-frog discontinuous Galerkin finite element methods. Optimal error estimates are provided for the scheme. Secondly, we discuss a temporally second-order accurate, finite element method for the incompressible magnetohydrodynamic equations.
(2)Moreover, a modified Crank--Nicolson method is used for the temporal discretization, and appropriate semi-implicit treatments are adopted for the approximation of the fluid convection term and two coupled terms. The energy stability analysis and optimal error estimates are provided for the scheme. Numerical results are presented to verify the theoretical results.
报告时间:2022年11月26日上午11:00-14:00
报告形式:腾讯会议;会议号:183-613-617
获取会议密码请发邮件至:liuwenjie@hit.edu.cn
报告人简介:徐立伟,电子科技大学数学科学学院教授。主要研究方向为波动方程与流体力学方程数值方法,在SIAM Numer. Anal., Numer. Math., IMA Numer. Anal., ESAIM M2AN, J. Comp. Phys., SIAM Sci. Comp., J. Sci. Comput.等应用和计算数学学术刊物上发表论文50余篇。主持完成国家自然科学基金面上项目和国家自然科学基金重大研发计划重点项目各1项,现主持国家自然科学基金面上项目1项。公共和学术服务包括教育部高等学校数学类专业教学指导委员会委员、中国数学会计算数学分会常务理事兼副秘书长、中国工业与应用数学学会理事兼专委会管理和地方学会联络委员会委员、《计算数学》编委等。