学术报告
学术报告
当前位置:首页  学术报告
美国密歇根理工大学孙继广教授报告通知
发布人:蔡易  发布时间:2018-07-11   浏览次数:274

应数学系郭玉坤副教授的邀请,受国际合作处资助,美国密歇根理工大学孙继广教授将于近日来访我校并做报告,欢迎感兴趣的师生参加。

 

一、报告题目:Introduction of the Quad-Curl Problem

时间:201872014:00-15:30

地点:格物楼503会议室;

摘要:The quad-curl problem arises in the study of the electromagnetic interior transmission problem and magnetohydrodynamics (MHD). In this talk, we introduce the background of the quad-curl problem. Associated Sobolev spaces are discussed and the well-posedness of the problem is proved. We also discuss the regularity results, which is largely an open problem. The related eigenvalue problem, namely, the quad-curl eigenvalue problem, is analyzed.

 

二、报告题目:A mixed FEM for the quad-curl problem

时间:201872015:30-17:00

地点:格物楼503会议室;

摘要:We study the quad-curl eigenvalue problem and propose a mixed method using edge elements. Assuming stringent regularity of the solution of the quad-curl source problem, we prove the convergence and show that the divergence-free condition can be bypassed.

 

三、报告题目:Hodge decomposition methods for a quad-curl problem on planar domains

时间:201872314:00-15:30

地点:格物楼503会议室;

摘要:We develop and analyze $P_k$ Lagrange finite element methods for a quad-curl problem on planar domains that is  based on the Hodge decomposition of divergence-free vector fields. Numerical results that illustrate the performance of the  finite element methods are also presented.

 

四、报告题目:Curl-conforming Weak Garlerkin Method for the Quad-Curl Problem

时间:201872315:30-17:00

地点:格物楼503会议室;

摘要:Abstract: A weak Galerkin (WG) method is proposed for the quad-curl problem. Using the curl-conforming N\'ed\'elec elements, the method solves a relatively small system. For polynomial spaces of order $k$, error estimates of $O(h^{k-1})$ in the energy norm and of $O(h^{k})$ in the $L^2$ norm are established. Numerical examples validate the theoretical results.

 

报告人简介:孙继广教授,现为美国密歇根理工大学教授。清华大学数学学士,特拉华大学(University of Delaware)应用数学硕士,特拉华大学(University of Delaware)应用数学博士,北卡罗来纳大学(University of North Carolina)博士后,主要从事科学计算、反问题、微分方程的数值解等方面的研究。他在声波和电磁波逆散射理论,波动问题数值模拟以及各向异性介质中声波传播等领域做出了一批重要的工作。特别地,他关于逆散射理论中的传输特征值的出色工作,已经引起了广泛关注。他主持美国自然科学基金2项,先后在《Inverse Problems》、《Journal of Computational Physics》、《 SIAM J. on Scientific Computing》、《Journal of Scientific Computing》等国际主流杂志上发表高水平研究论文50余篇,出版学术专著2部,多次受邀到德国、加拿大、新加坡、中国等地发表学术演讲。